Conceptual and Practical Approach to Structural Equations Modeling


  • Leonardo Adrián Medrano Universidad Nacional de Córdoba
  • Roger Muñoz-Navarro Universidad de Valencia



Modelos de Ecuaciones Estructurales, AMOS, análisis factorial, regresión múltiple


This methodological article explains a conceptual and practical approach to Structural Equation Models or Structural Equation Modeling (SEM). SEMs are considered among the most powerful tools for the study of causal relationships in non-experimental data. They are a combination of factor analysis and multiple regression and are composed of two components: the measurement model and the structural model. The measurement model describes the relationship between a series of observable variables; while in the structural model the relationships between variables are hypothesized; i.e., the relationships between latent variables are described with the use of arrows. Performing a SEM involves five stages: (1) A specification of the Model; (2) Identification of the Model; (3) Estimation of the Model; (4) Evaluation of the Model and (5) Re-specification of the Model. This article provides a series of guidelines on “best practices” for SEM analysis, with examples using the AMOS program.


Download data is not yet available.

Author Biographies

Leonardo Adrián Medrano, Universidad Nacional de Córdoba

Doctor en PsicologíaProfesor. Facultad de Psicología. Universidad Nacional de Córdoba, Argentina.Profesor. Facultad de Psicología. Secretario de Investigación. Universidad Siglo 21, Córdoba, Argentina.

Roger Muñoz-Navarro, Universidad de Valencia

Doctor en PsicologíaProfesor Asociado. Departamento de Personalidad, Evaluación y Tratamientos Psicológicos. Universidad de Valencia, Valencia, España. 


Arbuckle, J. L. (1997). Amos Users’ Guide. Version 3.6. Chicago: SmallWaters Corporation.

Aron, A. & Aron, E. (2001) Estadística para Psicología. Buenos Aires: Pearson Education.

Bagozzi, R. P., & Yi, Y. (2012). Specification, evaluation, and interpretation of structural equation models. Journal of the academy of marketing science, 40(1), 8-34. doi:

Barrett, P. (2007). Structural equation modelling: Adjudging model fit. Personality and Individual differences, 42(5), 815-824. doi:

Batista-Foguet, J. M. & Coenders, G. (2000). Modelos de Ecuaciones Estructurales. Madrid: La Muralla, S.A.

Bentler, P. M. (1985). Theory and implementation of EQS: A structural equations program. Los Angeles: BMDP Statistical Software

Bentler, P. M. (2007). On tests and indices for evaluating structural models. Personality and Individual Differences, 42(5), 825-829. doi:

Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological bulletin, 88(3), 588-606. doi:

Blalock, H. M., Jr. (1964). Causal inferences in non experimenta research. Chapel Hill: University of North Carolina Press.

Bollen, K. A. (1990). Overall fit in covariance structure models: two types of sample size effects. Psychological bulletin, 107(2), 256-259.

Boomsma, A., & Hoogland, J. J. (2001). The robustness of LISREL modeling revisited. Structural equation models: Present and future. A Festschrift in honor of Karl Jöreskog, 139-168.

Browne, M. W., MacCallum, R. C., Kim, C. T., Andersen, B. L., & Glaser, R. (2002). When fit indices and residuals are incompatible. Psychological methods, 7(4), 403-421. doi:

Byrne, B. M. (2001). Structural equation modeling with AMOS: Basic concepts, applications, and programming. Mahwah, NJ: Lawrence Erlbaum.

Cheung, G. W., & Lau, R. S. (2008). Testing mediation and suppression effects of latent variables: Bootstrapping with structural equation models. Organizational Research Methods, 11(2), 296-325. doi:

DiStefano, C., & Hess, B. (2005). Using confirmatory factor analysis for construct validation: An empirical review. Journal of Psychoeducational Assessment, 23(3), 225-241. doi:

Enders, C. K. (2005). An SAS macro for implementing the modified Bollen-Stine bootstrap for missing data: Implementing the bootstrap using existing structural equation modeling software. Structural Equation Modeling, 12(4), 620-641.

Fan, X. (2003). Using commonly available software for bootstrapping in both substantive and measurement analyses. Educational and Psychological Measurement, 63(1), 24-50. doi:

Finch, J. F., West, S. G., & MacKinnon, D. P. (1997). Effects of sample size and nonnormality on the estimation of mediated effects in latent variable models. Structural Equation Modeling: A Multidisciplinary Journal, 4(2), 87-107. doi:

Flora, D. B., & Curran, P. J. (2004). An empirical evaluation of alternative methods of estimation for confirmatory factor analysis with ordinal data. Psychological methods, 9(4), 466. doi:

Hawking S. W. & Mlodino L. (2010). The Grand Desing. New York: Bantam Books. Hayduk, L., Cummings, G., Boadu, K., Pazderka-Robinson, H., & Boulianne, S. (2007). Testing! testing! one, two, three–Testing the theory in structural equation models!. Personality and Individual Differences, 42(5), 841-850. doi:

Hooper, D., Coughlan, J. and Mullen, M. R. (2008). Structural Equation Modelling: Guidelines for Determining Model Fit. The Electronic Journal of Business Research Methods, 6(1), 53–60.

Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural equation modeling: a multidisciplinary journal, 6(1), 1-55. doi:

Hu, L. T., Bentler, P. M., & Kano, Y. (1992). Can test statistics in covariance structure analysis be trusted? Psychological bulletin, 112(2), 351. doi:

Iacobucci, D. (2009). Everything you always wanted to know about SEM (structural equations modeling) but were afraid to ask. Journal of Consumer Psychology, 19(4), 673-680. doi:

Iacobucci, D. (2010). Structural equations modeling: Fit indices, sample size, and advanced topics. Journal of Consumer Psychology, 20(1), 90-98. doi:

Jackson, D. L., Gillaspy Jr, J. A., & Purc-Stephenson, R. (2009). Reporting practices in confirmatory factor analysis: an overview and some recommendations. Psychological methods, 14(1), 6-23. doi:

Kline, R. B. (2005). Principles and practice of structural equation modeling (2nd ed.). New York: Guilford

Ledesma, R. (2008). Introduccción al Bootstrap. Desarrollo de un ejemplo acompañado de software de aplicación. Tutorials in Quantitative Methods for Psychology, 4(2), 51-60.

León, O. G. & Montero I. (2003). Métodos de Investigación en Psicología y Educación (3ra edición). España: Mc Graw Hill.

Little, T. D., Cunningham, W. A., Shahar, G., & Widaman, K. F.(2002). To parcel or not to parcel: Exploring the question, weighing the merits. Structural equation modeling, 9(2), 151-173.

MacCallum, R. C., & Austin, J. T. (2000). Applications of structural equation modeling in psychological research. Annual review of psychology, 51(1), 201-226. doi:

Markland, D. (2007). The golden rule is that there are no golden rules: A commentary on Paul Barrett’s recommendations for reporting model fit in structural equation modelling. Personality and Individual Differences, 42(5), 851-858. doi:

Marsh, H. W., Hau, K. T., & Wen, Z. (2004). In search of golden rules: Comment on hypothesis-testing approaches to setting cutoff values for fit indexes and dangers in overgeneralizing Hu and Bentler’s (1999) findings. Structural equation modeling, 11(3), 320-341. doi:

Martens, M. P., & Haase, R. F. (2006). Advanced applications of structural equation modeling in counseling psychology research. The Counseling Psychologist, 34(6), 878-911. doi:

McKnight, P. E., McKnight, K. M., Sidani, S., & Figueredo, A. J.(2007). Missing data: A gentle introduction. Guilford Press.

Medrano, L. A., Muñoz-Navarro, R., & Cano-Vindel, A. (2016). Procesos cognitivos y regulación emocional: aportes desde una aproximación psicoevolucionista. Ansiedad y Estrés, 22(2-3), 47-54. doi:

Miles, J., & Shevlin, M. (2007). A time and a place for incremental fit indices. Personality and Individual Differences, 42(5), 869-874. doi:

Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior research methods, 40(3), 879-891. doi:

Rodríguez Ayán, M. y Ruiz, M. (2008). Atenuación de la asimetría y de la curtosis de las puntuaciones observadas mediante transformaciones de variables: Incidencia sobre la estructura factorial. Psicológica, 29, 205-227

Ruiz, M. A.; Pardo, A. & San Martin, R. (2010). Modelos de ecuaciones estructurales. Papeles del psicólogo, 31(1), 34-45.

Schermelleh-Engel, K., Moosbrugger, H., & Müller, H. (2003). Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. Methods of psychological research online, 8(2), 23-74.

Sivo, S. A., Fan, X., Witta, E. L., & Willse, J. T. (2006). The search for” optimal” cutoff properties: Fit index criteria in structural equation modeling. The Journal of Experimental Education, 74(3), 267-288. doi:

Weston, R. & Gore Jr., P. A., (2006). A Brief Guide to Structural Equation Modeling. The Counseling Psychologist, 34(5), 719-751. doi:

Yuan, K. H. (2005). Fit indices versus test statistics. Multivariate behavioral research, 40(1), 115-148. doi:



How to Cite

Medrano, L. A., & Muñoz-Navarro, R. (2017). Conceptual and Practical Approach to Structural Equations Modeling. Revista Digital De Investigación En Docencia Universitaria [Digital Journal of University Teaching Research], 11(1), 219–239.