Technostress and Smartphone addiction mediated by Smartphone distraction in college students
DOI:
https://doi.org/10.19083/ridu.2024.1957Keywords:
Smartphone addictions, technostress, smartphone distraction, structural equationsAbstract
Introduction: the development of academic activities through virtual spaces contributes to increasing the use of Smartphones in university students, arising the need to study the effects of their use. Objective: to evaluate the mediating effect of Smartphone distraction between technostress and Smartphone addiction in university students in Metropolitan Lima. Methods: A sample of 550 university students, aged between 18 and 35 years, was evaluated with the Smartphone Distraction Scale, the Technostress Scale for University Students and the Smartphone App-Based Addiction Scale. Regression analysis was conducted to assess the mediating role of smartphone distraction in the explanatory relationship between technostress and cell phone addiction. Results: a complete effect on the part of the mediator was identified, in addition, it is observed that there is an indirect effect of technostress on smartphone addiction. Discussion: smartphone distraction has an effect on cell phone addiction as long as distraction is present as a mediator.Downloads
References
Álvarez y Moral (2020). Phubbing, Uso Problemático de Teléfonos Móviles y de Redes Sociales en Adolescentes y Déficits en Autocontrol. Health and Addictions 20 (1), 113-125. https://doi.org/10.21134/haaj.v20i1.487
Aguilera-Manrique, G., Márquez-Hernández, V. V., Alcaraz-Córdoba, T., Granados-Gámez, G., Gutiérrez-Puertas, V., & Gutiérrez-Puertas, L. (2018). The relationship between nomophobia and the distraction associated with smartphone use among nursing students in their clinical practicum. PLOS ONE, 13(8), e0202953. https://doi.org/10.1371/journal.pone.0202953
Brooks, S., Wang, X., & Schneider, C. (2020). Technology Addictions and Technostress: An Examination of the U.S. and China. Journal of Organizational and End User Computing, 32(2), 1-19. https://doi.org/10.4018/JOEUC.2020040101
Brooks. S., Longstreet, P. y Califf, C. (2017). Social Media Induced Technostress and its Impact on Internet Addiction: A Distraction-conflict Theory Perspective. AIS Transactions on Human-Computer Interaction, 9(2), 99-122. https://aisel.aisnet.org/thci/vol9/iss2/2?utm_source=aisel.aisnet.org%2Fthci%2Fvol9%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
Byrne, B. M. (2010). Structural Equation Modeling with Amos: Basic Concepts, Applications, and Programming (2nd ed.). Taylor and Francis Group.
Chen, L., Yan, Z., Tang, W., Yang, F., Xie, X. and He, J. (2016). Mobile phone addiction levels and negative emotions among Chinese young adults: The mediating role of interpersonal problems. Computers in Human Behavior, 55, 856–866. https://doi.10.1016/j.chb.2015.10.030
Csibi, S., Griffiths, M. D., Cook, B., Demetrovics, Z., and Szabo, A. (2018). The Psychometric Properties of the Smartphone Application-Based Addiction Scale (SABAS). International journal of mental health and addiction, 16(2), 393–403. https://doi.org/10.1007/s11469-017-9787-2
Dissing, A. S., Andersen, T. O., Jensen, A. K., Lund, R., & Rod, N. H. (2022). Nighttime smartphone use and changes in mental health and wellbeing among young adults: a longitudinal study based on high-resolution tracking data. Scientific reports, 12(1), 8013. https://doi.org/10.1038/s41598-022-10116-z
Ditrendia. (2022). Informe Mobile 2022 - España y el Mundo. https://mktefa.ditrendia.es/informe-mobile-2022?hsCtaTracking=f2a2831b-a4f8-48f3-9d4c-b26d6c71ac9b%7Ce82881d1-06c5-40ad-941e-05d1a3ee7952
Egielewa, P.E. (2021) ‘Use of smartphones amongst undergraduates in Nigeria: aid or distraction to their studies?’, Int. J. Technology Enhanced Learning, 13 (2), 149–166.
Elousa, P y Zumbo, B (2008). Coeficientes de fiabilidad para escalas de respuesta categórica ordenada. Psicothema. 20 (4), 896–901.
Fullwood, C.; Quinn, S.; Kaye, L. K. & Redding, Ch. (2017) My virtual friend: A qualitative analysis of the attitudes and experiences of Smartphone users: Implications for Smartphone attachment. Computers in Human Behavior, 75, 2017, 347-355. https://doi.org/10.1016/j.chb.2017.05.029.
Griffiths, M. (2005) A ‘components’ model of addiction within a biopsychosocial framework, Journal of Substance Use, 10(4), 191-197. https://doi.10.1080/14659890500114359
Hair, J. F., Hult, G. T., Ringle, C. M., & Sarstedt, M. (2022). A primer on partial least squares structural equation modeling (PLS-SEM) (3 ed.). Sage.
Hayes, A. & Coutts, J. (2020) Use Omega Rather than Cronbach’s Alpha for Estimating Reliability. But…, Communication Methods and Measures, 14(1), 124, DOI: 10.108
/19312458.2020.1718629
Hernandez, R., Fernandez, C. y Baptista, P. (2014). Metodología de la investigación. Mc Graw Hill.
Instituto Nacional de Estadística e Informática (20 de Febrero del 2021) Tecnologías de la Información y Comunicación: Hogares con al menos un miembro que tiene teléfono celular, según ámbito geográfico, 2010-2020. INEI. https://www.inei.gob.pe/estadisticas/indice-tematico/tecnologias-de-la-informacion-y-telecomunicaciones/
Ipsos (2022). El smartphonero hábitos, usos y tendencias.
https://www.ipsos.com/es-pe/usos-del-smartphone-en-la-vida-cotidiana-2021
Junco, R. (2012) ‘In-class multitasking and academic performance’. Computers in Human Behavior, 28(6), pp. 2236–2243. doi: 10.1016/j.chb.2012.06.031.
Karsay, K., Schmuck, D., Matthes, J. & Stevic, A. (2019). Longitudinal Effects of Excessive Smartphone Use on Stress and Loneliness: The Moderating Role of Self-Disclosure. Cyberpsychology, Behavior and Social Networking, 22 (11), 706-713. https://doi.org/10.1089/cyber.2019.0255
Kaviani, F., Young, K. L., Robards, B., & Koppel, S. (2020). Nomophobia and self reported smartphone use while driving: An investigation into whether nomophobia can increase the likelihood of illegal smartphone use while driving. Transportation Research Part F, 74, 212–224. https://doi.org/10.1016/j.trf.2020.08.024
Kerlinger, Fred y Lee, Howard. (2002). Investigación del Comportamiento. Métodos de Investigación en Ciencias Sociales. McGraw Hill.
Kil, N., Kim, J., McDaniel, J. T., Kim, J. & Kensinger, K. (2021). Examining associations between smartphone use, smartphone addiction, and mental health outcomes: a cross-sectional study of college students. Health Promotion Perspectives, 11(1), 36-44. https://doi.org/10.34172/hpp.2021.06
La Torre, G., Esposito, A., Sciarra, I., & Chiappetta, M. (2018). Definition, symptoms and risk of techno-stress: a systematic review. International Archives of Occupational and Environmental Health, 92(1), 13-35. https://doi.org/10.1007/s00420-018-1352-1
Lapointe, L.; Boudreau-Pinsonneault, C. and Vaghefi, I. (2013). Is Smartphone Usage Truly Smart? A Qualitative
Investigation of IT Addictive Behaviors, 2013 46th Hawaii International Conference on System Sciences, Wailea, HI, USA, 2013, pp. 1063-1072, doi: 10.1109/HICSS.2013.367.
Leynes, P. Andrew & Mok, Brittany, A. (2018). Event-Related Potential Measures of Smartphone Distraction. Cyberpsychology, Behavior, and Social Networking 21(4). https://doi.org/10.1089/cyber.2017.0630
Marciano, L., Driver, C.C., Schulz, P.J. & Camerini, A-L (2022). Dynamics of adolescents’ smartphone use and well-being are positive but ephemeral. Scientific Reports 12 -1316 http://dx.doi.org/10.1038/s41598-022-05291-y
Mascia, M., Agus, M., Tomczyk, L., Salvatore, N., Bellini, D. y Penna, M. ( 2023). Smartphone Distraction: Italian Validation of the Smartphone Distraction Scale (SDS). Int. J. Environ. Res. Public Health, 20 (15) 1-15. https://doi.org/10.3390/ijerph20156509
Maydeu-Olivares, A., Cai, L. & Hernandez, A. (2011). Comparing the fit of item response theory and factor analysis models. Structural Equation Modeling: A Multidisciplinary Journal, 18, 333-356
Osiptel (2023). De datos móviles cursado por teléfono móvil se triplicó en los últimos cuatro años (s/f). Internet móvil: tráfico de datos móviles cursado desde teléfonos móviles aumentó en más de 45 % entre 2022 y 2023. Gob.pe. Recuperado de: https://repositorio.osiptel.gob.pe/bitstream/handle/20.500.12630/902/Reporte%20E_MARZO_2024.pdf?sequence=1&isAllowed=y
Oraison, H., Nash‐dolby, O., Wilson, B., & Malhotra, R. (2020). Smartphone distraction‐addiction: Examining the relationship between psychosocial variables and patterns of use. Australian Journal of Psychology, 72(2), 188–198. https://doi.org/10.1111/ajpy.12281
Penado Abilleira M, Rodicio-García ML, Ríos-de-Deus MP and
Mosquera-González MJ (2020) Technostress in Spanish University Students: Validation of a Measurement Scale. Front. Psychol. 11:582317. doi: 10.3389/fpsyg.2020.582317
Quiroz González, E., Ortiz Giraldo, V., & Villavicencio Ayub, E. (2023). Tecnoestrés y tecnoadicción: El papel de la tecnodependencia en trabajadores de Colombia y México. Salud Uninorte, 39(2), 347-363. https://doi.org/10.14482/sun.39.02.020.359
Qi, C. (2019). A double-edged sword? Exploring the impact of students’ academic usage of mobile devices on technostress and academic performance. Behaviour & Information Technology, 38(12), 13371354.https://doi.org/10.1080/0144929x.2019.1585476
Reysen, R., Reysen, M. y Reysen, S. (2020). Academic Entitlement Predicts Smartphone Usage during Class. College Teaching, 69(1), 52–57. https://doi.org/10.1080/87567555.2020.1803192
Rhemtulla, M., Brosseau-Liard, P. É., & Savalei, V. (2012). When can categorical variables be treated as continuous? A comparison of robust continuous and categorical SEM estimation methods under suboptimal conditions. Psychological Methods, 17(3), 354-373. https://doi.org/10.1037/a0029315
Rozgonjuk, D., Kattago, M., & Täht, K. (2018). Social media use in lectures mediates the relationship between procrastination and problematic smartphone use. Computers in Human Behavior, 89, 191–198. https://doi.org/10.1016/j.chb.2018.08.003
Salazar-Concha, C., Encina, C., Rojas, G., Araya-Guzmán, S. (2022). Tecnoestrés y su efecto sobre la productividad en estudiantes universitarios en tiempos de la COVID-19. Revista Venezolana de Gerencia, 27(100), 1721-1738. https://doi. org/10.52080/rvgluz.27.100.26
Sandín, B., Valiente, R. M., García-Escalera, J., Campagne, D. M., &
Chorot, P. (2020). Psychological impact of the COVID-19 pandemic: Negative and positive effects in Spanish population during the mandatory national quarantine. Revista de Psicopatología y Psicología Clínica, 25(1), 1e–21e. https://doi.org/10.5944/rppc.28107
Shi, D., y Maydeu-Olivares, A. (2020). El efecto de los métodos de estimación en los índices de ajuste de SEM. Educational and Psychological Measurement, 80 (3), 421–
https://doi.org/10.1177/0013164419885164
Shu, Q., TU, Q. & Wang, K. (2011). The Impact of Computer Self-Efficacy and Technology Dependence on Computer-Related Technostress: A Social Cognitive Theory Perspective. International Journal of Human-Computer Interaction, 27(10), 923–939. https://doi.org/10.1080/10447318.2011.555313
Statista (2023). Number of Internet and Social Media Users Worldwide as of January 2023. https://www.statista.com/statistics/617136/digital-population-worldwide/
Swar B. & Hameed T. (2017). Fear of Missing out, Social Media Engagement, Smartphone Addiction and Distraction: Moderating Role of Self-Help Mobile Apps-based Interventions in the Youth. In Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2017),139-146. https://doi.org./10.5220/0006166501390146
Tarafdar, M., Maier, C., Laumer, S., & Weitzel, T. (2019). Explaining the link between technostress and technology addiction for social networking sites: A study of distraction as a coping behavior. Information Systems Journal, 30(1), 96-124. https://doi.org/10.1111/isj.12253
Throuvala, M. A., Pontes, H. M., Tsaousis, I., Griffiths, M. D.,
Rennoldson.M, and Kuss, D.J. (2021) Exploring the
Dimensions of Smartphone Distraction: Development, Validation, Measurement Invariance, and Latent Mean Differences of the Smartphone Distraction Scale (SDS). Frontiers in Psychiatry. 12, 1664-0640. htps://doi.org/10.3389/fpsyt.2021.642634
Troll, E. S., Friese, M., & Loschelder, D. D. (2021). How students’ self-control and smartphone-use explain their academic performance. Computers in Human Behavior, 117(106624), 106624. https://doi.org/10.1016/j.chb.2020.106624
Vallejos-Flores, M.A., Talledo-Sánchez, K., Carlos-Ventura, D., Sullcahuaman, J., Caycho-Caja, A., & Vigo-Carbajal, A. (2023). Smartphone addiction and life satisfaction: mediating effect of negative emotions. Interacciones, 9, e357. https://dx.doi.org/10.24016/2023.v9.357
Vujić, A., & Szabo, A. (2022). Hedonic use, stress, and life satisfaction as predictors of smartphone addiction. Addictive Behaviors Reports, 15, Article No. 100411. 10.1016/j.abrep.2022.100411.
Wacks Y, Weinstein AM. Excessive Smartphone Use Is Associated With Health Problems in Adolescents and Young Adults. Front Psychiatry. 2021 May 28;12:669042. doi: 10.3389/fpsyt.2021.669042
Yang, Z., Yan, Z., & Hussain, Z. (2022). The relationships between smartphone distraction, problematic smartphone use and mental health issues amongst a Chinese sample. The Social Science Journal, 1-12. https://doi.org/10.1080/03623319.2022.2066880
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Miguel Vallejos-Flores, Karim Talledo-Sánchez, David Carlos-Ventura, Aaron Caycho-Caja, Jessica Sullcahuaman Amesquita, Diana Rime Huamanyauri
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.