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Relación entre los Índices de Dificultad y Discriminación

Relação entre os índices de dificuldade e discriminação

 	Abstract. Two of the main indices used when doing a psychometric analysis of a 

performance test are the index of difficulty and the index of discrimination. These indices 

become indicators of the quality of a test as long as they are within acceptable ranges. 

This has two consequences, first the determination of the formula for the calculation of 

the indices, and secondly, the interpretation of them according to certain standards. This 

work shows the way how these indices are determined and related, as well as the way in 

which the discrimination rule influences the valuation of the test. Recommendations are 

also proposed for the use of both indices based on the analysis performed.

 	Resumen. Dos de los principales índices usados al hacer el análisis psicométrico de una 

prueba de rendimiento son el índice de dificultad y el índice de discriminación. Estos 

índices se convierten en indicadores de la calidad de una prueba en la medida que se 

encuentren dentro de rangos aceptables. Esto trae dos consecuencias, en primer lugar 

la determinación de la fórmula para el cálculo de los índices y en segundo lugar la 

interpretación de los mismos según determinadas normas. El presente trabajo muestra la 

forma como se determinan y relacionan estos índices, así como la manera en que influye 

la norma de discriminación en la valoración de la prueba. Se plantean recomendaciones 

sobre el uso de ambos índices a partir del análisis realizado.
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 	Resumo. Dois dos principais índices utilizados na realização da análise psicométrica de um 

teste de desempenho são o índice de dificuldade e o índice de discriminação. Esses índices 

tornam-se indicadores da qualidade de um teste, desde que estejam dentro dos limites 

aceitáveis. Isto tem duas consequências, em primeiro lugar a determinação da fórmula para 

calcular os índices e em segundo a interpretação deles de acordo com certos padrões. O 

presente trabalho mostra a maneira como esses índices são determinados e relacionados, 

bem como a maneira pela qual a norma de discriminação influencia a avaliação do teste. 

São feitas recomendações sobre o uso de ambos os índices com base na análise realizada.

Palavras-chave: 

índice de 

dificuldade, 

índice de 

discriminação, 

confiabilidade, 

validade, medida 

educacional.

The psychometric analysis of the questions comprising a performance test include 

the calculation of indices to typify them (Mejía, 2005). Two of the main indices are 

the difficulty index and the discrimination index. The difficulty index of a question, 

as its name suggests, is given by the numerical expression of the difficulty for test 

takers in answering the question. The discrimination index of a question divides, distinguishes, 

differentiates, and classifies test takers with higher and lower performance in the test. The 

quality of a performance test is largely defined by generating indices within suitable ranges. 

This begs the questions of how to calculate them, whether the difficulty and discrimination 

indices are connected, and which criteria determine they are within suitable ranges. This paper 

shows how these indices are determined and connected, as well as how the discrimination rule 

influences the valuation of quality of the test.

Objectives
a.	 To determine the connection between difficulty and discrimination indices of test 

questions.

b.	 To show how the discrimination rule influences the quality valuation of a test.

THEORETICAL FRAMEWORK
Answer Pattern.
In a performance test, difficulty and discrimination indices of questions are determined by 

answer patterns provided by test takers in the test questions. Based on Guttman’s frame of 

reference, people are classified based on their total score, which is their index of skill, and 

items are arranged based on their total score (Andrich, 2008). The answers of every person 

to each question are the gross data we started with (Wright & Stone, 1979). Regardless of a 
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question’s number of options, if these are dichotomous, the test takers will only have two 

answer options: correct or incorrect. We registered the answers to each test question per test 

taker. We agreed to use 1 to symbolize correct answers and 0 for incorrect answers. The answer 

pattern is set as a table where the first column registers the identification of each test taker and 

the following columns the answer code (1 or 0) to each question. The answer pattern allows us 

to determine the test taker’s score and number of correct answers per question. The score is 

found by counting the number of correct answers of the test taker in each question of the test; 

that is, by counting the number of codes 1 in the row of each test taker. The number of correct 

answers per question can be found by counting the number of test takers who answered them 

correctly; that is, by counting the number of codes 1 in each question column. We can rank, sort 

and distinguish between test takers with higher and lower performance based on these scores. 

The tally of correct answers and the distinction between groups are necessary to determine 

the aforementioned indices. Table 1 shows the ranking and number of correct answers, drawn 

from the answer pattern of test takers from our example (see Table 1).

Table 1
Example of ranking and number of correct answers from a group of test takers

ANSWER PATTERN 
AND SCORE  
RANKING OM

Q1 Q2 Q3 Q4 SCORE

1 Test taker 6 1 1 1 1 4

2 Test taker 3 1 1 1 0 3

3 Test taker 8 1 1 1 0 3

4 Test taker 2 1 0 1 1 3

5 Test taker 1 1 1 0 0 2

6 Test taker 4 1 0 1 0 2

7 Test taker 5 0 0 1 1 2

8 Test taker 7 1 0 0 0 1

Number of correct answers 7 4 6 3
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Difficulty Index.
The question Q1 had the highest number of correct answers (7), whereas Q4 had the lowest 

number of correct answers (3). Since Q1 was answered correctly by more test takers than Q4, 

the former turned out to be easier for the group. We will say then, that Q4 is “harder” than Q1 

for this group of test takers. In order to determine a measurement of how hard the question 

was for a group, we will compare the number of test takers who answered incorrectly with the 

optimal number. We will call difficulty index (IDif) to the comparison between the number of 

incorrect answers N − C for the question and the total number of test takers N.

IDif =   N − C
              N

If we decompose the fraction:	 IDif =    N  −  C
        N      N

The first fraction corresponds to 1 and the second one to the so-called easiness index. 

IDif = 1 − Ifac

This relationship shows that the difficulty and easiness of a question are exclusive 

and complementary notions regarding the unit. Easy and Difficult are polar adjectives. 

A question will be easier for a group of test takers if a higher number of people answer it 

correctly; therefore, the more people answer it incorrectly, the more difficult it will be. In 

order to analyze the difficulty of a question, we should count the number of incorrect answers 

instead of correct answers. In specialized literature, the relationship between the number of 

correct answers and the total of test takers is frequently named as “difficulty index” or “level 

of difficulty” (Canales, 2005; García-Cueto, 2005; Gronlund, 1999; Tristán, 2001). According to 

this definition, the higher the index, the greater the number of correct answers and thus the 

easier the question, which is contrary to the difficulty. From a purely semantic point of view, 

the term easiness index (García-Cueto, 2005) is more accurate to refer to the relationship 

between the number of correct answers and the total of test takers, as we had previously 

considered. The distinction is made in this paper by referring to the numerical expression 

of how difficult the target group finds it to answer a question correctly when we talk about 

difficulty index. This is given by:

IDif = 1 −  C
                         N 
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Where C is the number of correct answers per question and N is the number of test takers 

(see Table 2).

Table 2
Estimated difficulty indices

Q1 Q2 Q3 Q4

Number of correct answers (C) 7 4 6 3

N 8 8 8 8

IDif = 1 - C/N 0.125 0.5 0.25 0.625

The difficulty index (IDif) can only use values within an interval. If every test taker 

answers a question correctly, we will find that the number of correct answers (C) is equal 

to the number of test takers (N), in this case C=N, and therefore the difficulty index will be 

IDif = 1 −  N   = 0                                  	
        N

 . On the other hand, if none of the test takers answers a question correctly, 

 

the number of correct answers will be zero (C = 0) and therefore the difficulty index will be 
IDif = 1−  0   = 1                             	

        N
. In general, since 0 ≤ C ≤ N, then 0 ≤   C   ≤ 1                                    

N  
 , implying that −1≤  C  ≤ 0                                          

N 
 , and 

 

therefore   0 ≤ 1 −  C   ≤ 1                       	
	     N 

.  The value of difficulty index can thus be between 0 and 1, including  

 

these ones. The higher the difficulty index is, the more difficult the question is. 

 0 ≤  IDif  ≤ 1 

Discrimination Index.
According to Bazán (2000), “the discrimination of a question is measured by how it helps to 

expand the estimated differences between those who got a relatively high total test score 

and those who got a relatively low score” (p. 6). So, the discrimination index is the numerical 

expression of how a question divides the test takers with the highest performance from those 

with the lowest performance. These groups, referred to herein as upper group (UG) and lower 

group (LG), are determined using the score average as cut-off point, which is 2.5 in our example 

(see Table 1). The UG will consist of test takers with higher scores than 2.5 and the LG of test 

takers with lower scores than 2.5. Tables 3 and 4 will present the scores and answer patterns of 

the individuals from each group.
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Table 3
Answer pattern of the upper group

Q1 Q2 Q3 Q4 Score

1 Test taker 6 1 1 1 1 4

2 Test taker 3 1 1 1 0 3

3 Test taker 8 1 1 1 0 3

4 Test taker 2 1 0 1 1 3

Number of correct answers 4 3 4 2

Table 4
Answer pattern of the lower group

Q1 Q2 Q3 Q4 Score

5 Test taker 1 1 1 0 0 2

6 Test taker 4 1 0 1 0 2

7 Test taker 5 0 0 1 1 2

8 Test taker 7 1 0 0 0 1

Number of correct answers 3 1 2 1

Since it is not possible to directly observe the test takers’ real level of knowledge on 

the topic discussed in this test, it must be inferred. Although test scores are an ordinal 

measurement, these can traditionally be indicators of the level of knowledge of the person 

being tested. Occasionally, the ratio between the number of correct answers and test 

questions is used as an indicator. Similarly, a measurement of a group’s level of knowledge 

to a certain question is determined by the ratio between the number of correct answers and 

test takers of that group. The more correct answers the group has, the more homogeneous 

their level of knowledge will be on the topic discussed in the question. The more correct 

answers the group has, the higher the ratio between the number of correct answers and test 

takers in the group and thus the more homogeneous the group will be. A question that aims 

at differentiating test takers with higher performance form those with lower performance 

would have to compare the ratio between the number of correct answers and test takers per 

group. But this comparison must be by excess; the greater the difference between the UG and 

LG’s ratio of correct answers and test takers is, the higher the measurement of discrimination 

will be. The traditional theory of the test states that high discrimination is interpreted as a 

desirable feature and a key quality indicator of an item (Masters, 1988).

Let us consider a group of test takers N, the UG and LG determined according to the average 
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would each have N / 2 test takers. If the number of correct answers of UG is represented by CS  

and the number of correct answers of LG by Ci , the discrimination measurement of UG from LG 

is determined by the difference CS  /  ( N / 2 ) − Ci   /  ( N / 2 ). This difference is referred to as 

discrimination index, which will be represented by IDisc and is calculated using the following 

formula:

IDisc =   CS − Ci  
                 

                                                                                            

 N   /   2

Table 5
Estimated discrimination indices

Q1 Q2 Q3 Q4

UG Number of correct answers (Cs) 4 3 4 2

LG Number of correct answers (Ci) 3 1 2 1

N 8 8 8 8

IDisc = (Cs-Ci)/(N/2) 0.25 0.5 0.5 0.25

The discrimination index (IDisc) can only select values within an interval. If a question is 

answered correctly by every test taker from UG and none from LG, we will have that   Cs =  N / 2  
and Ci = 0 , so the discrimination index will be IDisc = ( 0  N / 2−0 ) =1

	         ( N / 2 ) 
 . On the other hand, if 

 

none of the test takers from LG answer a question correctly but everyone from LG does, 

then we will have that  Cs  = 0  and  Ci = N / 2, which will result in an index as follows:  

IDisc = ( 0 − N / 2  ) /  ( N / 2 ) = −1. A middle case would be when none of the test takers 

from both groups answers the question correctly (Cs = 0  y  Ci = 0), leading to the following 

index:  IDisc = ( 0 − 0  ) /  ( N / 2 ) =0. This way, the discrimination index can be between−1 y 

1, including these values. 

−1  ≤  IDisc ≤  1 

We can say that a question with IDisc = −1 is totally discriminatory, while, at the 

other end, a question with IDisc = 1 is erroneously discriminatory. If the goal is to measure 

the difference between test takers of the UG and those of the LG regarding a higher level of 

knowledge, a negative IDisc would indicate a higher level of knowledge in the LG than in the 

UG, an unacceptable situation as it contradicts the sense of the index.

The discrimination index has been calculated and described based on opposite groups. 

This is an easier way to determine discrimination than other indices. A common way to 



HURTADO MONDOÑEDO, L. L. (2018)

january – june 2018  |  U P C  |  273  

calculate this index is by a question-answer biserial correlation. A question is properly 

discriminatory in a test if it can be used to differentiate, distinguish, and separate individuals 

with higher and lower scores. When the question is properly discriminatory, the immediate 

consequence is that a positive correlation will take place between the question and test scores 

(García-Cueto, 2005). This way, the discrimination index is a statistical index that describes 

to what extent a question is in line with the other ones that seek to discriminate between 

people (Andrich, 2008). The type of correlation to be used will depend on the measurement 

features of the questions and test, such as, for example, if both variables are dichotomous, 

dichotomized, continuous, or a combination of all of them. Generally, the greater this 

correlation, the higher the discrimination; though there are some exceptions where a high 

discrimination is not expected. According to Garret (1966), the benefit of other methods of 

discrimination index calculation “is judged based on the extent to which they are able to 

give results that approximate those obtained through biserial correlation” (p. 403).

The problem of optimal difficulty
The questions that are too easy or turn out to be too difficult would lead to asymmetrical 

distributions regarding their percentage of correct and incorrect answers. An easy question shows 

a strong negative asymmetry; and the asymmetry is positive when the question is more difficult, 

being completely asymmetrical if its difficulty index is 0.5 (García-Cueto, 2005). In an experimental 

study of the distribution of test scores with difficulty values for items, Ebel (1977) notes: “the 

results of this research confirm the recommendation to use questions of intermediate difficulty 

when drafting a performance test” (p. 491). Along the same lines, García-Cueto (2005) maintains 

that “tests will generally get the best results when most of the items are at an intermediate 

difficulty” (p. 60). Tristán (2001) expresses an opposing opinion: “it is advisable to have a reagent 

in every range of difficulty and not only reagents focused on difficulty at 50% so that we are 

able to accurately measure the knowledge of each person” (p. 7). Tristán takes as an example the 

body temperature measured with a water thermometer, properly calibrated in a range from 0 

to 100, where the optimal temperature is not at 50 °C. Similarly, “the goal of including reagents 

with different levels of difficulty is to have a well-calibrated scale”1; hence the importance of 

considering the full range of difficulty for test questions. The standard tests –such as entrance 

tests– allow us to classify test takers, organizing them in a common scale and differentiating 

between high and low performing groups. In classroom assessments, a teacher does not normally 

seek to turn their performance test into a well-calibrated scale. It is more likely that their rank 

changes when applied to different groups. The low number of test takers these tests are usually 

1	  Tristán (1995, 2001, 2006) explains these ideas when the foundations for the Kalt model were presented.
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applied to tends to be the biggest limitation for obtaining accurate scales. Similarly, the limited 

number of test takers and classroom test questions causes a greater error in the calculation of 

reliability. On the other hand, the symmetrical distribution of scores should not be a requirement. 

The students’ performance in the test should not necessarily follow a normal distribution. This 

is more likely when the number of test takers is big and there are a series of differential features. 

Delgado (2004) refers to the agreement of Bloom, Hastings & Madaus with De Landsheere that 

“the normal curve is the most appropriate distribution for casual activity, whereas education has 

a deliberate purpose” (p.165). This paper aims at including both aforementioned opinions. On 

the one hand, to determine an interval for the difficulty index in a range close to intermediate 

difficulty and, on the other hand, to distribute them in this interval as a well-calibrated scale. 

Graphically, both approaches can be represented in what we propose as optimal area. 

METHOD
We will begin by analyzing the case of certain UG and LG based on the average. This will allow 

us to determine an area of admissible values for the indices. Separately, each of the indices 

can only have values within an interval of values. However, they must also be located within 

an area in a bidimensional plane when analyzed together as an ordered pair. Our first task will 

be to mathematically identify this area and therefore determine the relationship between IDif 
and IDisc. Once it has been defined, we will try to find a desirable part of this area for these 

indices, given a discrimination rule. Next, we will seek to optimize this area so that it has the 

highest number of ordered pairs of the form of (IDif , IDisc) associated with the performance 

test questions. Finally, we will apply these areas to groups of n individuals, where n < N.

Difficulty and Discrimination
The existence of a connection between IDif and IDisc is generally mentioned, though nothing 

else is said other than what can be gathered from the critical values. A question with a difficulty 

of 0 or 1 has a discrimination of 0; and a question with a difficulty of 0,5 has a discrimination 

of 1. We will seek to deepen this relationship. From the results presented in previous tables, we 

can summarize the indices for the four questions of our example in the following table:

Table 6
Estimated difficulty and discrimination indices

Q1 Q2 Q3 Q4

IDif 0.125 0.500 0.250 0.625

IDisc 0.250 0.500 0.500 0.250
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These indices, gathered after implementing the test, allow us to describe the questions 

and analyze the results. This analysis includes a characterization based on the question’s level 

of difficulty, a characterization based on its level of discrimination, and a quality assessment 

of the test based on the location of these indices in an interval of admissible values. There is a 

connection between IDif and IDisc. The group of possible values for one of them is related to the 

value of the other. A comparison of the indices shown on table 5 with a particular discrimination 

or difficulty rule would make us accept some questions and review (or discard) others. Whereas 

one of the goals of a performance test concerning standards is to organize test takers according 

to their level of knowledge of the topic assessed on the test, the power of discrimination of a 

question is more important. A good question must be answered correctly by a higher number 

of individuals with higher scores in the test than those with lower scores (García-Cueto, 2005). 

Area of Admissible Values
This paper was conducted based on the Kalt model2; however, we have based our analysis on 

the number of correct answers rather than percentages as Kalt shows. On the one hand, this 

will allow us to simulate extreme and intermediate cases for the answer pattern of test takers 

with a simple presentation and, on the other hand, mathematically formulate what will refer 

to as area of admissible values, normed area, and optimal area. We will begin with the case of 

UG and LG groups defined by the average. 

Table 7
Extreme cases for UG and LG determined by the average

CASE A CASE B CASE C CASE D

Cs N/2 N/2 0 0

Ci N/2 0 N/2 0

C = Cs + Ci N N/2 N/2 0

Cs - Ci 0 N/2 -N/2 0

N N N N N

IDif 0 0.5 0.5 1

IDisc 0 1 -1 0

The UG consists of individuals with higher scores than average, and the LG by those 

with lower scores than the average. Since there is no middle group, individuals from UG and 

2	  The Kalt model is used for the analysis of computer-based questions by IEIA in Mexico.
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LG comprise the total of test takers, which is why the total number of correct answers in each 

question will be equal to the sum of correct answers in both UG and LG to that question; 

that is C=Cs + Ci.  

According to this, we can distinguish four extreme cases: 

Case A:	 All test takers answer correctly:	 Cs = N / 2, Ci = N / 2 and C =N.

Case B:	 Only individuals from UG answer correctly: Cs = N / 2, Ci = 0 and C =N / 2.

Case C:	 Only individuals from LG answer correctly:Cs = 0, Ci = N / 2 and C = N / 2.

Case D:	 All test takers answer incorrectly: Cs = 0, Ci = 0  and C = 0. 

Table 8 shows IDif  and  IDisc values for the aforementioned cases.

We will assume the case of 80 test takers (N=80) to explain this point more clearly. 

Both UG and LG would each have 40 test takers and thus the number of correct answers Cs 

or Ci could not be higher than 40. The theoretical assumption is that the UG comprises test 

takers with higher performance, and the LG those with lower performance. The optimal 

behavior in a discriminatory question of these groups is that everyone from UG answers it 

correctly and everyone from LG fails. An erroneous behavior would arise if everyone from 

UG fails and everyone from LG answers correctly. Among both behaviors –optimal and 

erroneous–, we can find others by making the behavior of one of the groups fixed and the 

other variable. 

Table 8
Cases AB. Optimal behavior of UG (Cs = 40) and variable behavior of LG.

CASE AB1 CASE AB2 CASE AB3 CASE AB4 CASE AB5
Cs 40 40 40 40 40

Ci 0 10 20 30 40

C = Cs + Ci 40 50 60 70 80

Cs - Ci 40 30 20 10 0

N 80 80 80 80 80

IDif = 1 - C/N 0.5 0.375 0.25 0.125 0

IDisc = (Cs - Ci)/(N/2) 1 0.75 0.5 0.25 0

Intervals 0. ≤ IDif ≤ 0.5           0 ≤ IDisc ≤ 1
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Table 9
Cases BD. Optimal behavior of LG (Ci = 0) and variable behavior of UG. 

CASE BD1 CASE BD2 CASE BD3 CASE BD4 CASE BD5
Cs 0 10 20 30 40

Ci 0 0 0 0 0

C = Cs + Ci 0 10 20 30 40

Cs - Ci 0 10 20 30 40

N 80 80 80 80 80

IDif = 1 - C/N 1 0.875 0.75 0.625 0.5

IDisc = (Cs - Ci)/(N/2) 0 0.25 0.5 0.75 1

Intervals 0.5 ≤ IDif ≤ 1        0 ≤ IDisc ≤ 1

Table 10
Cases DC. Erroneous behavior of UG (Cs = 0) and variable behavior of LG. 

CASE DC1 CASE DC2 CASE DC3 CASE DC4 CASE DC5

Cs 0 0 0 0 0

Ci 0 10 20 30 40

C = Cs + Ci 0 10 20 30 40

Cs - Ci 0 -10 -20 -30 -40

N 80 80 80 80 80

IDif = 1 - C/N 1 0.875 0.75 0.625 0.5

IDisc = (Cs - Ci)/(N/2) 0 -0.25 -0.5 -0.75 -1

Intervals 0.5 ≤ IDif ≤ 1        -1 ≤ IDisc ≤ 0

Table 11
Cases CA. Erroneous behavior of LG (Ci = 40) and variable behavior of UG. 

CASE CA1 CASE CA2 CASE CA3 CASE CA4 CASE CA5

Cs 0 10 20 30 40

Ci 40 40 40 40 40

C = Cs + Ci 40 50 60 70 80

Cs - Ci -40 -30 -20 -10 0

N 80 80 80 80 80

IDif = 1 - C/N 0.5 0.375 0.25 0.125 0

IDisc = (Cs - Ci)/(N/2) -1 -0.75 -0.5 -0.25 0

Intervals 0 ≤ IDif ≤ 0.5        -1 ≤ IDisc ≤ 0
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The cases described above allow us to have a group of possibilities for both  IDif and 

IDisc. Table 12 shows the IDif  and IDisc  in descending order according to difficulty.

Table 12

Cases of  IDif and  IDisc arranged in order of difficulty

CASE IDif IDisc

BD1 1.000 0.000

DC1 1.000 0.000

BD2 0.875 0.250

DC2 0.875 -0.250

BD3 0.750 0.500

DC3 0.750 -0.500

BD4 0.625 0.750

DC4 0.625 -0.750

AB1 0.500 1.000

BD5 0.500 1.000

CA1 0.500 -1.000

DC5 0.500 -1.000

AB2 0.375 0.750

CA2 0.375 -0.750

AB3 0.250 0.500

CA3 0.250 -0.500

AB4 0.125 0.250

CA4 0.125 -0.250

AB5 0.000 0.000

CA5 0.000 0.000

We will create ordered pairs of the form of (IDif,IDisc) for each case considered and we 

will put them in a bidimensional plane (IDif vs IDisc). The horizontal axis considers the values 

of IDif  and the vertical axis the values of IDisc. Figure 1 shows the group of points of the form 

(IDif,IDisc) for each case in table 12. The junction of points would indicate the outline of the 
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rhombus where extreme possibilities for points with coordinates indicated by ordered pairs of 

the form (IDif, IDisc) would be located. Thus, for example, an extreme possibility would occur 

in a question where the 40 test takers from UG and only 6 from the LG answer correctly, so the 

point (0.575,0.850) associated with this question would be part of the outline of the rhombus. 

The non-extreme possibilities would be located inside. For example, if 37 test takers from the 

UG and 9 from the LG answer correctly, we would get the point (0.575,0.700) that is located 

below the point (0.575,0.850) from the outline of the rhombus. This way, both the perimeter 

and the inside of the rhombus would contain the set of all possibilities of ordered pairs of the 

form (IDif, IDisc) for each question of the performance test. 

Figure 1. Distribution of points (IDif,IDisc) for the cases on table 12
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If we refer to the vertices of the rhombus as P(0.0,0.0),  Q(0.5,1.0),  R(1.0,0.0)  and S(0.5,-
1.0), and in the form this paper has defined difficulty and discrimination indices, the ordered 

pair with IDif as first component and IDisc as second component must belong to the area 

restricted by the rhombus  PQRS, as shown in figure 2. Since a negative IDisc is not admissible, 

we should only consider the cases with non-negative IDisc in the aforementioned area of the 

rhombus; that is, only the cases AB and BD. 

This would make us redefine our area as the one bounded by the triangle PQR in the 

first quadrant where the admissible values of IDisc would be located, as shown in figure 3. We 

can therefore say that the points of the form of (IDif,IDisc) associated to each question of a 

Figure 2. Area created by the group of points (IDif,IDisc)    
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performance test must belong to the triangular area bounded by the points (0.0,0.0), (0.5,1.0) 

and (1.0,0.0), referred to as area of admissible values. 

Mathematical Formulation for the Area of Admissible Values
The triangular area PQR will become our area of interest and it can be mathematically 

defined through inequalities. When an inequality only has two variables, the solution set is 

graphically represented by a half-space in the Cartesian plane. The half-space of an inequality 

of the type  y ≤ ax+b consists of the respective line and every point below it. If the inequation 

is of the type y ≥ ax+b , the half-space includes the line and every point above it. The IDif will 

be used as the x variable and IDisc as the y variable. We will first look for the linear equations 

that include the segments PQ and QR, which are two of the limits of our triangular area. A 

point-gradient form will be used. 

The segment PQ is bounded by the points P(0,0) and  Q(0.5,1) , so its gradient is determined 

by  1  −  0  = 2
0.5 −  0 

. Using P(0,0) as crossing point with a gradient of m=2, we state a linear equation 

 

 including PQ:	

LPQ: y − 0 = 2 (x − 0 )                                      
y = 2x

Figure 3. Area of admissible values
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The segment QR is bounded by the points Q(0.5,1) and R(1,0), so its gradient is determined 

by  0  −  1  = − 2
1 −  0.5 

. Using R(1,0)as crossing point with a gradient of  m=−2, we estate a linear  

 

equation including QR:

LPQ: y − 0 = −2 (x −1)                                      
y = −2x + 2

The equations found belong to two lines that bound the triangular area PQR. The third 

one includes the segment PR ; that is, the horizontal axis, with the equation y = 0  (LPR: y =0). 

These equations allow us to define the triangular area PQR as the intersection of three half-

spaces: 

Half-space 1: 	 Consisting of all the points in the line LPQ and below it: y ≤ 2x. 

Half-space 2: 	 Consisting of all the points in the line LQR and above it: y ≤ − 2x + 2.

Half-space 3: 	 Consisting of all the points in the line LPR and above it: y ≥ 0. 

That is,

                                                         Area PQR       {     

y ≤ 2 x
	         y ≤ 2 - 2x

          y ≥ 0

We can also redefine the triangular area as the junction of two right triangles. If we refer 

to the midpoint of the PR segment as T, then the PQR area is the junction of both triangular 

areas PTQ and RTQ. These latter two are defined by conveniently restricting the interval of 

the variable x. We have as follows:

	 Area  PTQ:	y ≥ 0; y ≤ 2x; 0 ≤  x ≤ 0.5
	 Area  RTQ:      y ≤  0; y ≤ 2 − 2x; 0.5 ≤  x ≤ 1 
The PQR area has three edge points. The point P with coordinates x=0, y=0 ; the point Q 

with coordinates x = 0.5, y = 1; and the point R with coordinates x=1, y=0. Or the equivalent 

form:

Area PQR = Area  PTQ  ͜    Area  RTQ

Area PQR  {	0 ≤ y ≤ 2x            si, 0 x 0.5
                      	0 ≤ y ≤ 2 − 2x      si, 0.5 x 1

Since x and y correspond to IDif and IDisc respectively, the area PQR corresponds to the 

set of possible ordered pairs of the form of  (IDif, IDisc) for certain question. We will refer to this 

zone as AREA OF ADMISSIBLE VALUES (AAC) of indices for every performance test question to 

be analyzed. 
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(IDif, IDisc) ε RVA ↔ {    
0 ≤ IDisc ≤  2IDif           si,0 ≤  IDif ≤ 0.5

				            0 ≤ IDisc ≤  2−2IDif       si,0.5 ≤ IDif ≤ 1

Based on the AAV, we can mathematically formulate the relation between IDif  and IDisc  

when the groups have been determined according to the average.  

                                     IDisc = {  

 0    si, IDif  =  0
                                                          1    si, IDif  =  0.5
                                                          0    si, IDif  =  1

                0 ≤ IDisc ≤ {    
2 IDif             si, 0  ≤  I Dif  ≤ 0.5

                                          2 − 2 IDif       si, 0.5  ≤  I Dif  ≤ 1

This means that the interval of potential values for IDisc is determined by the value of 

IDif. So, for example, if we have a question with IDif = 0.35, its discrimination index must be 

between 0 and 2 x 0.35; that is: 0 ≤ IDisc ≤ 0.70. If other question has a difficulty index of 0.75, 

its discrimination index must be between 0  and 2 − 2  x 0.75; that is: 0 ≤ IDisc ≤ 0.50.

Normed Area
The triangular area PQR described in the item above shows us the AAV; that is the area of 

the plane IDisf vs IDisc, where the indices of questions are distributed. This is a theoretical 

area, but not necessarily optimal. We can determine a value for the IDisc above which the 

discrimination indices of questions should be placed. We will refer to it as discrimination 

standard value, and it will be represented by  IDiscnorma = ƙ, where ƙ  is a positive constant lower 

than 1. On the other hand, we know that the closer to 0.5 the difficulty indices of the questions, 

the higher the reliability for the test will be and the better the scores will be distributed. There 

must be an interval of values for the difficulty index that enables a higher reliability without 

sacrificing the discrimination between groups; that is, there must be a closed interval where 

desirable difficulty indices are located. If we define the lower end of the interval with the value 

D and, given the symmetry of the admissible value area, the higher value of the interval will 

be equivalent to 1− D. We will refer to D as a difficulty normed value and it will be represented 

by IDif norma= D. 

We will outline a horizontal line corresponding to the normed value of discrimination. 

Every question whose points belong to the AAV and are inside or above the horizontal line 

would discriminate according to the norm. Figure 4 represents this with the horizontal line 

IDisc= ƙ. Simultaneously, the closed interval [D,1−D] has been defined, where we can find the 

normed values for the difficulty index. 

All questions whose points belong to the AAV and are between the vertical lines outlined 
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by the endpoints of the interval will have a desirable difficulty. This way, questions whose 

points with coordinates (IDif, IDisc) are located within the AAV, between the vertical lines 

IDif = D and IDif = 1− D, and inside or above the horizontal line IDisc= ƙ  will belong to the 

normed area. 

The normed area corresponds to the inside and outline of the polygon ABQB´A´ . The 

coordinates of the polygon’s vertices are determined by A(D,ƙ); B(D,2D); Q(0.5,1.0);   В´(1− 
D,2D) and A´(1−D,k). The points B and B´are determined by replacing x=D and x=1−D in the 

linear equations of LPQ and LQR, respectively. 

Optimal Area
The more points within the normed area, the better the behavior of the questions and therefore 

the better constructed the performance test will be. These points must be distributed covering 

the interval of desirable difficulty and above the discrimination normed value, covering a 

part of the polygonal area. A greater number of these dispersed points, following both rules 

–difficulty and discrimination– would create an optimal area determined by the biggest area 

possible of the polygon ABQB´A´. We are facing an optimization problem whose objective 

function is the area function of the polygon ABQB´A´. 

Figure 4. Normed area for the case: GS = GI = N/2
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With the help of figure 4, we can model the function area of the polygon. 

Area of polygon ABQBÁ´ = Area of rectangle ABQB´A´ + Area of triangle BQB´
Area of polygonABQBÁ´ = (1 − 2D)(2D − k) + 1 (1 − 2D)(1 − 2D)
							                        2
Area of polygon ABQB´A´ = −2D2  +  2kD − k + 0.5
When analyzing a test, we compare the indices of questions with some qualifying 

criterium. If we accept certain discrimination rule, the value of k is constant; therefore, the 

polygon ABQB´A´ area is expressed as a function of the difficulty normed value D. We use S to 

represent the area of the polygon ABQBÁ´, so:	

S(D)  = −2D2  +  2kD − k + 0.5
In order to maximize this function, we must first find its critical value; that is, the value 

of D that maximizes the function S(D). For this reason, we found the first derivative of the 

function and set it equal to zero.

S(D) = − 4D  + 2k
− 4D + 2k = 0

D = k
       2

The second derivative of the function S(D) is determined by S”(D)=−4. So, for D=	
k 

	
2

  

 

we have that S”=(
	 k 

)˂ 0
	 2

. This shows that the function S(D) reaches its maximum value 

 

when D=	
k 

	
2

 . In other words, for a normed difficulty value of D=	
k 

	
2

, the part of desirable  

 

area is the biggest possible. With D=	
k 

	
2

 we can find the coordinates for the polygon vertices, 

 

 so we have that A(  k 
, k)   ;  B(  

 
k 

, k); Q (0.5,1.0); B´(1− 
 k 

, k)and A´(1−
  k

, k)     2	                2				                2		                2
. It should be  

 

noted that both points A and B, and A´ and B´ have the same coordinates for the value of D=	
k 

	
2

  

 

which makes the polygonal area optimal. In other words, the polygonal area becomes optimal 

when it turns into the triangular area BQB´. 

This means that a performance test with questions that discriminate equal to or above 

a discrimination normed value k must have difficulty indices within the interval (  k ,1− k ) 
   2       2

  

 

so that the greatest number of questions with coordinates ( IDif , IDisc) will be located in the 

optimal area. As a result, a performance test will have a higher quality as long as it includes a 

greater number of questions in the optimal area. It should not be surprising that the optimal 
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Figure 5. Optimal area for the following case: GS = GI = N/2 and discrimination rule k
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area has turned out to be a triangle. When looking for an interval for the difficulty index 

in a range close to the value of IDif = 0.5, we must cover the area with points horizontally 

distributed and increasingly closer to 0.5. Similarly, when looking for a discrimination above 

a value of IDisc = k, we must cover the area with points vertically distributed approaching 1. 

The most plausible distribution for this double behavior is the triangular distribution. We can 

find points horizontally distributed that approach 0.5 and vertically distributed above k that 

approach 1 in the optimal area. 

Indices for groups of “n” individuals (n<N/2) 
In order to calculate the IDif, we counted the number of incorrect answers of test takers in 

total, which is separate from the way the upper and lower groups have been divided. On the 

contrary, the calculation of IDisc depends on the way they are divided. The cut-off point setting 

for groups is not standardized among assessors. The first part of this paper has considered 

the score average as cut-off point for UG and LG. Occasionally, when we have large groups of 

test takers, we use quartiles or deciles. The discriminatory power of a question has proved to 

be more accurately determined if the groups are based on the upper or lower 27% instead of 

any other distribution percentage (Garret, 1966). Though this is the optimal percentage, Ebel 

(1977) states that “they are actually not much better than the 25 or 33% groups” (p. 476). One of 



the reasons for not choosing the average is a better division of groups without being affected 

by the scores of test takers with average performance.

Considering that the UG and LG each consist of n individuals, the discrimination index 

would be calculated based on 

IDisc  = Cs − Ci

             n
Since each group will have n individuals, the difference in correct answers will be 

divided by n and not by half of the total of test takers N  
2

 as we did for the division according 

 

to the average. The calculation of IDif  will not be affected by this division since it depends 

on the total number of correct answers and not its sum per group. It is important to make 

this distinction since the opposite; that is, using the relation 1−Cs + Ci

           N
 to calculate the IDif,  

 

would give us an interval of [1− 2n  ,1] 
             N

 different than the theoretical one of [0,1] for the  

 

difficulty index. We created table 13 based on the information above, which includes extreme 

cases. Ruling out the cases III and IV for being opposite to the sense of discrimination index, 

we have the following critical points:

 
 
 A1  (0,0); B1 (   

 n 
 , 1)   ;  C1 (  

2n
 , 0)  ; D1 (  1   

2n 
,  0)  ; E1 (  1 

 
 

 n  
, 1)  ; F1  (1,0)

                            N		         N	                 N			   N	          

that define a trapezoidal area (AAV) when graphed, as shown in figure 6.

Figure 6. Area of admissible values for the case: GS = GI = n (n < N/2)

A1 (0,0)

0 C1(2n/N,0) 1

IDisc

IDif

E1(1-n/N,1)B1(n/N,1)

F1(1,0)

1

D1(1-2n/N,0)

Table 13

Case I Case II Case III Case IV Case V Case VI Case VII Case VIII
Cs N N 0 0 n N 0 0
Ci 0 0 n N n N 0 0
Cs - Ci N N -n -n 0 0 0 0
C N N-n n N-n 2n N N-2n 0
N N N N N N N N N
IDif 1-n/N n/N 1-n/N n/N 1-2n/N 0 2n/N 1
IDisc 1 1 -1 -1 0 0 0 0
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Area of Admissible Values for Groups of ¨n¨ Individuals (n<N/2)
Following a similar methodology as for groups created according to the average, we can 

demonstrate that the AREA OF ADMISSIBLE VALUES (AAV) for groups with n individuals, with 

 n˂  

 N 
 

       2
, is determined by:

                                                              0  ≤  IDisc ≤    

 N 
  ( IDif )           si, 0 ≤  IDif  ≤  

 n 
 

						                              n		                                  N

              (IDif , IDisc)  Є RVA ↔  { 0  ≤  IDisc ≤    1                           si,  

 n
  ≤  IDif  ≤ 1 

 n 
 

						                                                               N		            N

                                                                                    0  ≤  IDisc  ≤   

 N 
  − 

 N 
 ( IDif )      si, 1 −  

 n 
 ≤  IDif  ≤ 1

						                              n       n		                N

If the performance test has been applied to a big group of N  test takers, it is recommended 

to divide it in three groups: UG, MG (middle group) and LG, where each end group consists of  

 

n individuals ( n˂  

 N 
 

       2
). In this case, we have an area defined by a trapezoid and not a triangle 

 

 as for the groups with  N 
 

2
  individuals each. Note that the points C1 and D1 are not vertices  

 

of the trapezoid, but only points included in the segment A1  F1. Figure 6 shows that the points  

 

B1 (  

 n 
 ,1)and E1(1  

n  
,1)       N                       N

are located at a distance of  d (B1E1) =1 − 

2n
		      N

 away from one another.  

 

Taking it to the limit, when n approaches 0 , the distance between both points would be 1.

                                            lim d (B1E1) =  lim (1−  

 2n )  
= 1

			                                                   N

This limit (and impossible) case would occur when n = 0, turning the trapezoidal area into 

a rectangular area determined by [0,1] . [0,1], which corresponds to the theoretical ranges of 

indices and would show no distinction between groups. The opposite case would occur when 

n approaches  N 
 

2
 , since now the distance between points would be 0.

                                            lim d (B1E1) =     lim (1−  

2n  )= 0
			                                                      N                                                  n →   N                      n →  N

    				                2	                     2

According the latter, B1 and  E1 would only meet at one point with coordinates (0.5,1.0).This 

way, the trapezoidal area  A1B1 E1 F1 would turn into the triangular area of the case previously 

analyzed; that is, the groups divided according to the average. We can also demonstrate that, 

in the limit case, the points C1  and  D1  would meet in the middle point of the segment A1F1; 
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that is, in the point with coordinates (0.5,0.0). The more n moves away below the value of  N 
 

2
,  

 

the points B1  and  E1 would be farther away and therefore the area of admissible values would 

be bigger. 

Normed Area
Based on the AAV, we will outline a horizontal line corresponding to the discrimination normed 

value IDisc = k and two vertical lines outlined by the edges of the interval for desirable 

difficulty  [D,1−D]. Every question with points that belong to the AAV and are inside or above 

the horizontal line and between the vertical lines will belong to the normed area. Figure 7 shows 

this polygonal area P1Q1 B1 E1 Q1 ´P´1. Since k is constant, these conditions can demonstrate 

that the areaS of the normed area is function of D and is determined by:

S  (D) =  −  

 N 
   D2   +   2k D   +  1− k −   

 n 
 

         n	                                   N

Figure 7.  Normed area for the case: GS = GI = n (n < N/2)
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The same that maximizes for a value of  D =   

 n 
  k. 

 
         N

. The coordinates, both for the points 

 

   P1 and  Q1 and   P1´ and  Q1´ are equal for this value, resulting in a trapezoidal area.

In sum, if the groups UG and LG consisting of n individuals each are considered in a 

performance test whose questions discriminate equal to or above a discrimination normed 

value k, the difficulty indices must belong to the interval [   

 n 
  k, 1 −  

 n 
  k ]     N	            N

so that the 

 

higher number of questions with coordinates of the form of (IDif, IDisc) are inside the optimal 

area. As a result, a performance test will have higher quality if it has a higher number of 

questions within the optimal area. So, for example, if the UG and LG comprise 27% of test takers 

with higher and lower scores, respectively; we have that  n = 27% N , therefore 
 

 n 
  = 0.27 

 
N

 .  

Figure 8. Optimal area for the case: GS = GI = n (n < N/2) and discrimination rule “k”
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Figure 9. Optimal area for the case: GS = GI = 0.27N and discrimination rule “k”
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For a discrimination rule k, we would have the following interval for IDif: [0.27k,1− 0.27k]. 

Figure 9 shows the optimal area where the coordinates of the form (IDif, IDisc) should be 

located for each question of a performance test where groups were set by the rule of 27%. 

The areas shown in figures 5 and 9 are optimal areas where the indices of the form (IDif, 
IDisc) should be found for each test question. The more points in this area, the greater the 

number of questions with an optimal behavior in the test, and therefore a higher quality.

FINAL COMMENTS
Based on this paper, and for a performance test, we can conclude as follows:

a.	 With the difficulty index (IDif) and the discrimination index  (IDisc) of a question, we can 

create ordered pairs of the form (IDif, IDisc) for each test question.

b.	 There is a zone in the bidimensional plane where the pairs (IDif, IDisc) of each question 

are located. This zone is clearly defined and will be called area of admissible values (AAV).

c.	 The AAV has a mathematical formulation.

d.	 The  IDif and IDisc for each question are not separate values. They are linked through a 

mathematical relation that stems from the mathematical formulation of AAV.

e.	 Given a discrimination normed value k and a difficulty normed value D, there will be 

a normed area within the AAV where the pairs (IDif, IDisc) of questions that behave 

according to the rules would be placed.

f.	 There is a value D in terms of k that optimizes the normed area. This is referred to as 

optimal area or area of desirable behavior (ADB).

g.	 The ADB allows the fulfillment of two desirable conditions when designing a performance 

test: i) questions that discriminate equal to or above the standard, and ii) questions with 

difficulty distributed in a range close to intermediate difficulty.

h.	 The way the upper group (UG) and lower group (LG) are determined influences the 

mathematical formulation of the AAV, the mathematical relation between indices, and 

the value D that optimizes the normed area.

i.	 The ADB is a triangular area in the case of groups determined by the average.

j.	 The ADB is a trapezoidal area if the groups consist of   n  individuals of the N test takers, 

where 
 
n <   

 N 
	 2

 .

k.	 If groups are determined by the average, the optimizing value is
 
D <   

 k 
	 2

.

l.	 If both UG and LG groups consist of n  individuals out of the N test takers, with 
 
n <   

 N 
	 2

 , 

then the optimizing value is D =   

 n 
  k.

        N
.
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m.	 The more pairs of the form of (IDif, IDisc) belong to the ADB, the better behavior of 

questions and the higher quality of performance test. 

n.	 Determining the discrimination standard value affects the area of ADB and thus the 

number of questions in it.

o.	 Determining the discrimination standard value influences the quality interpretation of a 

performance test. 
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